
CENG3430 Rapid Prototyping of Digital Systems

Lecture 05:

Finite State Machine

Ming-Chang YANG

mcyang@cse.cuhk.edu.hk

mailto:mcyang@cse.cuhk.edu.hk

Outline

• Finite State Machine (FSM)

– Clock Edge Detection

– Feedback

• Use of Signals and Variables

– Outside Process: Concurrent Statement

– Inside Process: Sequential Statement

• Combinational Process

• Clocked Process

• Types of FSMs: Moore vs. Mealy

• Practical Examples

– Up/Down Counter

– Pattern Generator

CENG3430 Lec05: Finite State Machines 2

• Finite State Machine (FSM): A system jumps from

one state to another:

– Within a pool of finite states, and

– Upon clock edges and/or input transitions.

• Example of FSM: traffic light, digital watch, CPU, etc.

• Two crucial factors: time (clock edge) and state (feedback)

Finite State Machine (FSM)

CENG3430 Lec05: Finite State Machines 3

Outline

• Finite State Machine (FSM)

– Clock Edge Detection

– Feedback

• Use of Signals and Variables

– Outside Process: Concurrent Statement

– Inside Process: Sequential Statement

• Combinational Process

• Clocked Process

• Types of FSMs: Moore vs. Mealy

• Practical Examples

– Up/Down Counter

– Pattern Generator

CENG3430 Lec05: Finite State Machines 4

Clock Edge Detection

• “if” or “wait until” statements can be used to

detect the clock edge of a clock signal (e.g., CLK):

• “if” statement:

– if CLK’event and CLK = '1' -- rising edge

– if CLK’event and CLK = '0' -- falling edge

OR

– if(rising_edge(CLK)) -- rising edge

– if(falling_edge(CLK)) -- falling edge

• “wait until” statement:

– wait until CLK = '1'; -- rising edge

– wait until CLK = '0'; --falling edge

CENG3430 Lec05: Finite State Machines 5

• rising_edge() function in std_logic_1164 library

– This function returns a value TRUE only when the present

value is '1' and the last value is '0'.

– If the past value is something like 'Z','U' etc. then it will

return a FALSE value.

• The statement (clk'event and clk='1')

– It results TRUE when the present value is '1' and there is an

edge transition in the clk.

– It does not see whether the previous value is '0' or not.

CENG3430 Lec05: Finite State Machines 6

rising_edge(CLK) vs. CLK'event

http://vhdlguru.blogspot.hk/2010/04/difference-between-risingedgeclk-and.html

Just use rising_edge() and falling_edge() functions!

CENG3430 Lec05: Finite State Machines

How to use “if” or “wait until”? (1/2)

• Synchronous Process: Computes values only on

clock edges (i.e., only sensitive/sync. to clock signal).

– Both “wait-until” or “if” statements can be used:

process

begin

wait until clk=‘1’;

…

end process

Note: IEEE VHDL requires that a process with a wait statement must not
have a sensitivity list, and the first statement must be wait until.

process (clk)

begin

…

if(rising_edge(clk))

…

end process 7

Usage

of
“wait

until”

Usage

of
“if”

 The first statement must be wait until.

 NO sensitivity list implies that there is one clock signal.

 The clock signal must be in the sensitivity list.

 NOT necessary to be the first.

How to use “if” or “wait until”? (2/2)

• Asynchronous Process: Computes values on clock

edges or when asynchronous conditions are TRUE.

– That is, it must be sensitive to the clock signal (if any), and

to all inputs that may affect the asynchronous behavior.

– For async. processes, only “if” statements can be used:

process (clk, input_a, input_b, …)

begin

…

if(rising_edge(clk))

…

end process

CENG3430 Lec05: Finite State Machines 8

Usage

of
“if”

 The sensitivity list

should include the

clock signal, and all

inputs that may affect

asynchronous behavior.

Outline

• Finite State Machine (FSM)

– Clock Edge Detection

– Feedback

• Use of Signals and Variables

– Outside Process: Concurrent Statement

– Inside Process: Sequential Statement

• Combinational Process

• Clocked Process

• Types of FSMs: Moore vs. Mealy

• Practical Examples

– Up/Down Counter

– Pattern Generator

CENG3430 Lec05: Finite State Machines 9

Feed-forward and Feedback Paths

• So far, we only learned logic with feed-forward (or

open-loop) paths.

• Now, we are going to learn feedback (or closed-loop)
paths─the key step of making a finite state machine.

• There are three types of feedback paths:

1) Direct Feedback

2) Feedback using Signals

3) Feedback using Variables
CENG3430 Lec05: Finite State Machines 10

Controller Plant

Sensor

1) Direct Feedback

library IEEE;

use IEEE.STD_LOGIC_1164.ALL;

entity feedback_1 is

port(a,clk,reset: in std_logic;

c: buffer std_logic);

end feedback_1;

architecture feedback_1_arch of feedback_1 is

begin

process(clk, reset) -- async.

begin

if reset = '1' then c <= '0';

elsif rising_edge(clk) then

c <= not(a and c);

end if;

end process;

end feedback_1_arch ;

CENG3430 Lec05: Finite State Machines 11

 not(a and c) will take effect and

be assigned to c at the next rising clock edge.

a c

clk

D Q

reset

Internal Feedback: inout or buffer

• Recall (Lec01): There are 4 modes of I/O pins:

1) in: Data flows in only

2) out: Data flows out only (cannot be read back by the entity)

3) inout: Data flows bi-directionally (i.e., in or out)

4) buffer: Similar to out but it can be read back by the entity

• Both buffer and inout can be read back internally.

– inout can also read external input signals.
CENG3430 Lec05: Finite State Machines 12

Class Exercise 5.1

• Draw the signal c

– Assume initially c = 0

elsif rising_edge(clk) then

c <= not(a and c);

CENG3430 Lec05: Finite State Machines 13

Student ID:

Name:

Date:

clk

reset

a

c

a c

clk

D Q

reset

CENG3430 Lec05: Finite State Machines

2) Feedback using Signals
library IEEE;

use IEEE.STD_LOGIC_1164.ALL;

entity feedback_2 is

port(a,clk,reset: in std_logic;

c: buffer std_logic);

end feedback_2;

architecture feedback_2_arch of feedback_2 is

signal b: std_logic; -- internal signal b

begin

process(clk,reset)

begin

if reset = '1' then c <= '0';

elsif rising_edge(clk) then

b <= not(a and c);

c <= b;
end if;

end process;

end feedback_2_arch ; 15

a c

clk
reset

D Q D Q
b

 not(a and c) will take effect and

be assigned to b at the next rising clock edge.

 b will be assigned to c at the next rising

clock edge.

Why? Combinational logic

Class Exercise 5.2

• Draw signals b, and c

– Assume initially b=1 and c=0

elsif rising_edge(clk) then

b <= not(a and c);

c <= b;

CENG3430 Lec05: Finite State Machines 16

Student ID:

Name:

Date:

clk

reset

a

c

b

a c

clk
reset

D Q D Q
b

CENG3430 Lec05: Finite State Machines

3) Feedback using Variables
library IEEE;

use IEEE.STD_LOGIC_1164.ALL;

entity feedback_3 is

Port(a,clk,reset: in std_logic;

c: buffer std_logic);

End feedback_3;

architecture feedback_3_arch of feedback_3 is

begin

process –- no sensitivity list

variable v: std_logic; -- local variable v

begin

wait until clk = '1';
if reset = '1' then v := '0';
else

v := not(a and c);
c <= v;

end if;

end process;

end feedback_3_arch ; 18

a c

clk

D Q

reset

v

 not(a and c) affects v immediately at the

next rising clock edge.

 The previous new v will be assigned to c at

the same rising clock edge.

Class Exercise 5.3

• Draw variable v and signal c

– Assume initially c = 0

wait until clk = '1';

v := not(a and c);

c <= v;

CENG3430 Lec05: Finite State Machines 19

Student ID:

Name:

Date:

clk

reset

a

v

c

a c

clk

D Q

reset

v

Direct vs. Signal vs. Variable Feedback

CENG3430 Lec05: Finite State Machines 21

clk

reset

a

c

c

c

b

1) Direct Feedback

2) Feedback using Signals

3) Feedback using Variables (as the same as Direct Feedback!)

c <= not(a and c);

b <= not(a and c);

c <= b;

v := not(a and c);

c <= v;










































 








Signal Feedback vs. Variable Feedback

• Feedback using signals or variables will have

different results.

• Signals

– Signal assignment “<=” can be treated as a flip-flop.

• Left-hand-side of “<=” is output

• Right-hand-side of “<=” is input

– A signal can be only updated once, when the process is

performed at the triggering clock edge.

• When a signal is assigned to different values by different statements

in a process, only the last statement is effective.

• Variables

– Variable assignment “:=” will take effect immediately.

– A variable in a process can be updated many times.

CENG3430 Lec05: Finite State Machines 22

Outline

• Finite State Machine (FSM)

– Clock Edge Detection

– Feedback

• Use of Signals and Variables

– Outside Process: Concurrent Statement

– Inside Process: Sequential Statement

• Combinational Process

• Clocked Process

• Types of FSMs: Moore vs. Mealy

• Practical Examples

– Up/Down Counter

– Pattern Generator

CENG3430 Lec05: Finite State Machines 24

CENG3430 Lec05: Finite State Machines 25

• Outside Process
– Concurrent Statements

• Inside Process
– Sequential Statements

1) Combinational Process:
NO CLK triggering

• “<=” is a combinational logic

• All involved inputs should be

in the sensitivity list

2) Clocked Process:
Has CLK triggering

• “<=” is a flip-flop

• Synchronous Inputs: should

NOT be in the sensitivity list

• Asynchronous Inputs:

should be in sensitivity list

architecture body

Outside Process

Combinational Process

NO Clock Triggering

Clocked Process

Clock Triggering Exists

1) Synchronous Inputs
NOT in sensitivity list

2) Asynchronous Inputs
IN sensitivity list

if/wait until CLK;

process(sensitivity list)

Overview: Use of Signals and Variables

CENG3430 Lec05: Finite State Machines 26

• Outside Process
– Concurrent Statements

• Inside Process
– Sequential Statements

1) Combinational Process:
NO CLK triggering

• “<=” is a combinational logic

• All involved inputs should be

in the sensitivity list

2) Clocked Process:
Has CLK triggering

• “<=” is a flip-flop

• Synchronous Inputs: should

NOT be in the sensitivity list

• Asynchronous Inputs:

should be in sensitivity list

architecture body

Outside Process

Combinational Process

NO Clock Triggering

Clocked Process

Clock Triggering Exists

1) Synchronous Inputs
NOT in sensitivity list

2) Asynchronous Inputs
IN sensitivity list

if/wait until CLK;

process(sensitivity list)

Overview: Use of Signals and Variables

Outside Process: Concurrent Statement

• Signal Assignments outside a Process

– All the statements outside processes are “concurrent”.

• All concurrent statements can be interchanged freely.

• Each statement will be executed once when any signal in it changes.

– Signals can be assigned with multiple values if “resolved
logic” (i.e., std_logic rather than std_ulogic) is allowed.

architecture test_arch of test is

out1 <= in1 and in2; -- concurrent statement

out2 <= in1 or in2; -- concurrent statement

out2 <= in2; -- multi-value assignment

end test_arch;

• Variable Assignments outside a Process

– Variables can only live inside processes!

CENG3430 Lec05: Finite State Machines 27

Ex:

CENG3430 Lec05: Finite State Machines 28

• Outside Process
– Concurrent Statements

• Inside Process
– Sequential Statements

1) Combinational Process:
NO CLK triggering

• “<=” is a combinational logic

• All involved inputs should be

in the sensitivity list

2) Clocked Process:
Has CLK triggering

• “<=” is a flip-flop

• Synchronous Inputs: should

NOT be in the sensitivity list

• Asynchronous Inputs:

should be in sensitivity list

architecture body

Outside Process

Combinational Process

NO Clock Triggering

Clocked Process

Clock Triggering Exists

1) Synchronous Inputs
NOT in sensitivity list

2) Asynchronous Inputs
IN sensitivity list

if/wait until CLK;

process(sensitivity list)

Overview: Use of Signals and Variables

Inside Process: Sequential Statement

• Statements inside process are executed sequentially.

– The process will be executed once when one or more

signals in the sensitivity list changes.
process(in1, in2) -- sensitivity list

variable v1, v2: std_logic;

begin

s1 <= in1 and in2;

s1 <= in1 or in2;

v1 := in1 and in2;

v1 := in1 or in2;

end process

– Signals Assignments (<=) inside a Process:

Only the last assignment for a particular signal takes effect.

– Variables Assignments (:=) inside a Process:

All assignments take effect immediately and sequentially.

• A process can be: “combinational” or “clocked”.
CENG3430 Lec05: Finite State Machines 29

Ex:

CENG3430 Lec05: Finite State Machines 30

• Outside Process
– Concurrent Statements

• Inside Process
– Sequential Statements

1) Combinational Process:
NO CLK triggering

• “<=” is a combinational logic

• All involved inputs should be

in the sensitivity list

2) Clocked Process:
Has CLK triggering

• “<=” is a flip-flop

• Synchronous Inputs: should

NOT be in the sensitivity list

• Asynchronous Inputs:

should be in sensitivity list

architecture body

Outside Process

Combinational Process

NO Clock Triggering

Clocked Process

Clock Triggering Exists

1) Synchronous Inputs
NOT in sensitivity list

2) Asynchronous Inputs
IN sensitivity list

if/wait until CLK;

process(sensitivity list)

Overview: Use of Signals and Variables

1) Combinational Process

• Combinational Process

– NO clock triggering condition can be found inside.

• Clock Triggering Condition: if (clk='1' and clk'event),

(wait until clk='1'), etc.

– Each “<=” is a combinational logic.

– All involved inputs should be in the sensitivity list.

• Otherwise the results will be unpredictable.

combinational_process: process(in1, in2)

begin

out3 <= in1 xor in2;

out3 <= ’1’;

end process;

CENG3430 Lec05: Finite State Machines 31

Ex:

Class Exercise 5.4
1 signal S1, S2: bit;

2 signal S_OUT: bit_vector(1 to 8);

3 process (S1, S2)

4 variable V1, V2: bit;

5 begin

6 V1 := ’1’;

7 V2 := ’1’;

8 S1 <= ’1’;

9 S2 <= ’1’;

10 S_OUT(1) <= V1;

11 S_OUT(2) <= V2;

12 S_OUT(3) <= S1;

13 S_OUT(4) <= S2;

14 V1 := ’0’;

15 V2 := ’0’;

16 S2 <= ’0’;

17 S_OUT(5) <= V1;

18 S_OUT(6) <= V2;

19 S_OUT(7) <= S1;

20 S_OUT(8) <= S2;

21 end process;

CENG3430 Lec05: Finite State Machines 32

Student ID:

Name:

Date:

• Which line(s) will NOT

take effect?

Answer: ______________

• When will the process be

executed?

Answer: ______________

• What are the values of
S_OUT after execution?

Answer:

S_OUT(1):

S_OUT(2):

S_OUT(3):

S_OUT(4):

S_OUT(5):

S_OUT(6):

S_OUT(7):

S_OUT(8):

CENG3430 Lec05: Finite State Machines 34

• Outside Process
– Concurrent Statements

• Inside Process
– Sequential Statements

1) Combinational Process:
NO CLK triggering

• “<=” is a combinational logic

• All involved inputs should be

in the sensitivity list

2) Clocked Process:
Has CLK triggering

• “<=” is a flip-flop

• Synchronous Inputs: should

NOT be in the sensitivity list

• Asynchronous Inputs:

should be in sensitivity list

architecture body

Outside Process

Combinational Process

NO Clock Triggering

Clocked Process

Clock Triggering Exists

1) Synchronous Inputs
NOT in sensitivity list

2) Asynchronous Inputs
IN sensitivity list

if/wait until CLK;

process(sensitivity list)

Overview: Use of Signals and Variables

2) Clocked Process

• Clocked Process

– A clock edge expression can be found inside:

• “if” statement:
clocked_process: process(sensitivity list)

begin

… -- same as combinational process

if (clk='1' and clk'event) then

out1 <= in1 and in2;

end if;

… -- same as combinational process

end process;

• “wait until” statement:
clocked_process: process -- no sensitivity list

begin

wait until clk='1';

out1 <= in1 and in2;

end process;

CENG3430 Lec05: Finite State Machines 35

1) Each “<=” is a flip-flop.

2) The assignment takes

effect on next clock edge.

1) Each “<=” is a flip-flop.

2) The assignment takes

effect on next clock edge.

Class Exercise 5.5

CENG3430 Lec05: Finite State Machines 36

Student ID:

Name:

Date:

• Find the signal results after clock edges t1 ~ t4:

process

signal s1: integer:=1;

signal s2: integer:=2;

signal s3: integer:=3;

begin

wait until rising_edge(clk);

s1 <= s2 + s3;

s2 <= s1;

s3 <= s2;

sum <= s1 + s2 + s3;

end process

end

t1 t2 t3 t4

s1

s2

s3

sum

t1 t2 t3 t4

Class Exercise 5.6

CENG3430 Lec05: Finite State Machines 38

Student ID:

Name:

Date:

• Find the signal results after clock edges t1 ~ t4:

process

variable v1: integer:=1;

variable v2: integer:=2;

variable v3: integer:=3;

begin

wait until rising_edge(clk);

v1 := v2 + v3;

v2 := v1;

v3 := v2;

sum <= v1 + v2 + v3;

end process

end

t1 t2 t3 t4

v1

v2

v3

sum

t1 t2 t3 t4

Do Variables Have Memory?

• Yes. After a process is called, the state of a variable
will be kept for being used again next time.

CENG3430 Lec05: Finite State Machines 40

library IEEE;

use IEEE.std_logic_1164.all;

entity test is port (a, reset_v1: in std_logic;

b, c: out std_logic); end test;

architecture test_arch of test is

begin

label_proc1: process (a, reset_v1)

variable v1 : std_logic;

begin

if reset_v1 ='1' then

v1:= not a;

end if;

b <= a;

c <= v1;

end process label_proc1;

end test_arch;

v1 stays at two different levels

depending on previous result.

CENG3430 Lec05: Finite State Machines 41

• Outside Process
– Concurrent Statements

• Inside Process
– Sequential Statements

1) Combinational Process:
NO CLK triggering

• “<=” is a combinational logic

• All involved inputs should be

in the sensitivity list

2) Clocked Process:
Has CLK triggering

• “<=” is a flip-flop

• Synchronous Inputs: should

NOT be in the sensitivity list

• Asynchronous Inputs:

should be in sensitivity list

architecture body

Outside Process

Combinational Process

NO Clock Triggering

Clocked Process

Clock Triggering Exists

1) Synchronous Inputs
NOT in sensitivity list

2) Asynchronous Inputs
IN sensitivity list

if/wait until CLK;

process(sensitivity list)

Overview: Use of Signals and Variables

Synchronous & Asynchronous Inputs

• Besides of the clock signal (CLK), other signals in a

clocked process can be classified into two types:

1) Synchronous Inputs (e.g., D input of flip-flops)

• Inputs that should be checked only at the next clock edge.

• NO need to put synchronous input signals in the sensitivity list.

2) Asynchronous Inputs (e.g., RESET input of flip-flops)

• Inputs that should be checked either at the next clock edge or

when any asynchronous input in the sensitivity list changes.

• Asynchronous inputs NEVER exist in wait-until clocked processes.

process(CLK, RESET) -- no need to put D, why?
begin
if (RESET = '1') then
Q <= '0'; -- Reset Q immediately

elsif CLK = '1' and CLK'event then
Q <= D; -- Q follows input D

end if;
end process;

CENG3430 Lec05: Finite State Machines 42

QD

CLK

Positive-

Edge-

Triggered

D FF

RESET

Class Exercise 5.7

…

port(clock,reset: in std_logic;

t_light: out std_logic_vector (2 downto 0));

…

type traffic_state_type is (s0, s1,s2,s3);

signal t_state: traffic_state_type; -- internal signal

CENG3430 Lec05: Finite State Machines 43

Student ID:

Name:

Date:

• What are processes p1 and p2 (combinational or clocked)?

• Which signals are sync., async., or combinational inputs?

p1: process(t_state)
begin
case (t_state) is
when s0 => t_light <= "100";
when s1 => t_light <= "110";
when s2 => t_light <= "001";
when s3 => t_light <= "010";

end case;
end process;

p2: process
begin
wait until clock='1';
if reset = '1' then

t_state <= s0;
else
case t_state is
when s0 => t_state <= s1;
when s1 => t_state <= s2;
when s2 => t_state <= s3;
when s3 => t_state <= s0;

end case;
end if;

end process;

Class Exercise 5.8

CENG3430 Lec05: Finite State Machines 45

Student ID:

Name:

Date:

• Based on Class Exercise 5.7, rewrite process p2 using

asynchronous reset.

sync_p2: process

begin

wait until clock='1';

if reset = '1' then

t_state <= s0;

else

case t_state is

when s0 => t_state <= s1;

when s1 => t_state <= s2;

when s2 => t_state <= s3;

when s3 => t_state <= s0;

end case;

end if;

end process;

async_p2: process

begin

end process;

Recall: How to use “if” or “wait until”?

• Asynchronous Process: Computes values on clock

edges and when asynchronous conditions are TRUE.

– That is, it must be sensitive to the clock signal (if any), and

to all inputs that may affect the asynchronous behavior.

– Only “if” statements can be used:

process (clk, input_a, input_b, …)

begin

…

if(rising_edge(clk))

…

end process

CENG3430 Lec05: Finite State Machines 46

Usage

of
“if”

 The sensitivity list

should include the

clock signal, and all

inputs that may affect

asynchronous behavior.





Summary: Inside Process

• Signals Assignments (<=) inside a Process

– Only the last assignment for a particular signal takes effect.

– Combinational Process: No clock (CLK) triggering

• Each “<=” is a combinational logic.

• All involved inputs should be in the sensitivity list.

– Clocked Process: Has clock (CLK) triggering

• Signal assignments before or outside the clock edge detection:

– As the same as combinational process.

• Signal assignments after or inside the clock edge detection:

– Each “<=” can be treated as a flip-flop: The signal assignment

will take effect at the next clock edge.

– Synchronous inputs should NOT be in the sensitivity list.

– Asynchronous inputs should be in the sensitivity list.

• Variables Assignments (:=) inside a Process

– All assignments take effect immediately and sequentially.

CENG3430 Lec05: Finite State Machines 48

CENG3430 Lec05: Finite State Machines 49

• Outside Process
– Concurrent Statements

• Inside Process
– Sequential Statements

1) Combinational Process:
NO CLK triggering

• “<=” is a combinational logic

• All involved inputs should be

in the sensitivity list

2) Clocked Process:
Has CLK triggering

• “<=” is a flip-flop

• Synchronous Inputs: should

NOT be in the sensitivity list

• Asynchronous Inputs:

should be in sensitivity list

architecture body

Outside Process

Combinational Process

NO Clock Triggering

Clocked Process

Clock Triggering Exists

1) Synchronous Inputs
NOT in sensitivity list

2) Asynchronous Inputs
IN sensitivity list

if/wait until CLK;

process(sensitivity list)

Summary: Use of Signals and Variables

Summary: Multiple Assignments

• Signals

– Outside Process

• Signals can be assigned with multiple values if “resolved

logic” is allowed.

– Inside Process

• Only the last assignment for that particular signal will

take effect.

• Variables

– Outside Process

• Variables can only live inside processes!

– Inside Process

• ALL variable assignments will take effect immediately

and sequentially.

CENG3430 Lec05: Finite State Machines 50

Outline

• Finite State Machine (FSM)

– Clock Edge Detection

– Feedback

• Use of Signals and Variables

– Outside Process: Concurrent Statement

– Inside Process: Sequential Statement

• Combinational Process

• Clocked Process

• Types of FSMs: Moore vs. Mealy

• Practical Examples

– Up/Down Counter

– Pattern Generator

CENG3430 Lec05: Finite State Machines 51

Types of Finite State Machines

• Moore Machine:

– Outputs are a function of

the present state only.

• Mealy Machine:

– Outputs are a function of

the present state and

the present inputs.

CENG3430 Lec05: Finite State Machines 52

Even

Odd

Reset

0/0 1/1

1/1

0/0

State

/

input

/

output

Even

0

Odd

1

Reset

0 1

1

0

https://www.slideshare.net/mirfanjum1/moore-and-mealy-machines-29553482

nand not

D-type

Flip-flop

Moore Machine (1/3)

• Moore Machine:

– Outputs are a function of the present state only.

• An Example of Moore Machine:

F1: C <= not (A and C); –- “<=” is a flip-flop

F2: D <= not C; -- Moore Machine

CENG3430 Lec05: Finite State Machines 53

B is the current output of not(A and C), but B does not need to exist.
Writing C <= not(A and C) is enough.

 F2

 F1

Moore Machine (2/3)

• The simplest Moore machine uses only one process:

CENG3430 Lec05: Finite State Machines 54

1 architecture moore_arch of system is

2 signal C: bit; -- state

3 begin

4 D <= not C; -- combinational logic

5 process – sequential logic

6 begin

7 wait until rising_edge(clock);

8 C <= not (A and C); -- flip-flop

9 end process;

10 end moore_arch;

Moore Machine (3/3)

• Using two processes is flexible and easier to design.

CENG3430 Lec05: Finite State Machines 55

process (C) -- combinational

begin

D <= not C; -- Moore Machine

end process;

process (clock, reset) -- sequential

begin

if reset = '1' then c <= '0';

elsif rising_edge(clock) then

C <= not (A and C); -- flip-flop

end if;

end process;

 F2

 F1

Class Exercise 5.9

• Draw the waveform of C (initially C=0)

CENG3430 Lec05: Finite State Machines 56

Student ID:

Name:

Date:

nand not

D-type

Flip-flop

C=/D
when A=1

C=/D
when A=0

clock

C <= not (A and C) D <= not C

Mealy Machine (1/2)

• Mealy Machine:

– Outputs are a function of the present state and inputs.

• An Example of Mealy Machine:

F1: C <= not(A or C); –- “<=” is a flip-flop

F2: D <= (A or C); -- Mealy Machine

CENG3430 Lec05: Finite State Machines 58

nor or

D-type

Flip-flop

B is the current output of not(A or C), but B does not need to exist.
Writing C <= not(A or C) is enough.

 F2

 F1

Mealy Machine (2/2)

architecture mealy_arch of some_entity is

signal C: std_logic;

begin

process (A,C) -- combinational logic

begin

D <= (A or C); -- Mealy Machine

end process;

process(clock,reset) -- sequential logic

begin

if reset = '1' then c <= '0';

elsif rising_edge(clock) then

C <= not(A or C); -- flip-flop

end if;

end process;

end mealy_arch;

CENG3430 Lec05: Finite State Machines 59

nor or

D-type

Flip-flop

Class Exercise 5.10

CENG3430 Lec05: Finite State Machines 60

Student ID:

Name:

Date:

• Draw the waveforms of C and D (initially C=0)

A

C

clock

D

C <= not(A or C);
D <= (A or C);

VHDL Coding Tips and Styles

• Separating the combinational and sequential logics.

– Try to use at least two processes: one contains all

combinational logic & the other contains all sequential logic.

• Keeping each process as simple (small) as possible.

– Try to partition a large process into multiple small ones

based on the signals in the sensitivity list.

• Putting every signal that your process needs to know

about changes to be in the sensitivity list.

• Avoiding assigning a signal from multiple processes.

– It may cause the “multi-driven” issue.

CENG3430 VHDL Coding Tips 62

Recall: What we have done in Lab06

• Task1: Display the input number (XY) in hexadecimal

• Task2: Count down from the input number (XY) to (00)
CENG3430 Lec05: Finite State Machines 63

entity sevenseg is

port(clk : in STD_LOGIC;

switch : in STD_LOGIC_VECTOR (7 downto 0);

btn : in STD_LOGIC;

ssd : out STD_LOGIC_VECTOR (6 downto 0);

ssdcat : out STD_LOGIC);

end sevenseg; underline: external I/O pins

-- count down
process(s_pulse)
begin
if rising_edge(s_pulse) then
if (counter_en = '1') then
if(counter=0) then
counter <= to_integer(

unsigned(switch));
else
counter <= counter - 1;

end if;
end if;

counter_vec <= std_logic_vector(
to_unsigned(counter,8));

end if;
end process;

-- update the seven segment display
process(ms_pulse)
… -- see the next page

end process;

-- output ssd (combinational)
process(digit)
… -- see the next page
end process;

Example: Lab06 (1/2)

CENG3430 Lec05: Finite State Machines 64

-- generate 1ms and 1s clocks
process(clk)
begin
if rising_edge(clk) then
if (s_count = 49999999) then
s_pulse <= not s_pulse;
s_count <= 0;

else
s_count <= s_count + 1;

end if;
if (ms_count = 49999) then
ms_pulse <= not ms_pulse;
ms_count <= 0;

else
ms_count <= ms_count + 1;

end if;
end if;

end process;

-- read button (combinational)
process(btn)
begin
if rising_edge(btn) then
counter_en <= not counter_en;

end if;
end process;

-- count down
process(s_pulse)
… -- see the previous page

end process;
-- update the seven segment display
process(ms_pulse)
begin
if ms_pulse='1' then
if(counter_en = '1') then
digit <= counter_vec(7 downto 4);

else
digit <= switch(7 downto 4);

end if;
else
if(counter_en = '1') then
digit <= counter_vec(3 downto 0);

else
digit <= switch(3 downto 0);

end if;
end if;
ssdcat <= ms_pulse; -- select display

end process;
-- output ssd (combinational)
process(digit)
begin
case digit is
when "0000" => ssd <= "1111110";
…

end case;
end process;

Example: Lab06 (2/2)

CENG3430 Lec05: Finite State Machines
65

-- generate 1ms and 1s clocks
process(clk)
begin
if rising_edge(clk) then
if (s_count = 49999999) then
s_pulse <= not s_pulse;
s_count <= 0;

else
s_count <= s_count + 1;

end if;
if (ms_count = 49999) then
ms_pulse <= not ms_pulse;
ms_count <= 0;

else
ms_count <= ms_count + 1;

end if;
end if;

end process;

-- read button (combinational)
process(btn)
begin
if rising_edge(btn) then
counter_en <= not counter_en;

end if;
end process;

Outline

• Finite State Machine (FSM)

– Clock Edge Detection

– Feedback

• Use of Signals and Variables

– Outside Process: Concurrent Statement

– Inside Process: Sequential Statement

• Combinational Process

• Clocked Process

• Types of FSMs: Moore vs. Mealy

• Practical Examples

– Up/Down Counter

– Pattern Generator

CENG3430 Lec05: Finite State Machines 66

Example 1) Up/Down Counter

• Up/Down Counters: Generate a sequence of

gradually increasing or decreasing counting patterns

according to the clock and inputs.

– Synchronous Clock: All clock inputs of state registers (i.e.,

flip-flops) are connected.

• More complex to design

• More logic

• Less time delay at outputs

– Asynchronous Clock: The output of one state register (i.e.,

flip-flop) is the clock of another state register.

• Easier to design

• Less logic

• More time delay at outputs

CENG3430 Lec05: Finite State Machines 67

4-Bit Sync. Clock Down Counter

entity sync_counter is

port(CLK: in std_logic;

RESET: in std_logic;

COUNT: inout std_logic_vector(3 downto 0));

end sync_counter ;

architecture sync_counter_arch of sync_counter is

begin

process(CLK, RESET)

begin

if(RESET = '1') then COUNT <= "0000";

else

if(rising_edge(CLK)) then

COUNT <= COUNT - 1;

end if;

end if;

end process;

end sync_counter_arch;

CENG3430 Lec05: Finite State Machines 68

synchronous clock, asynchronous reset

counting

http://web.cs.mun.ca/~paul/cs3724/

All clock inputs of state registers (i.e., flip-flops) are connected.

4-Bit Async. Clock Down Counter

entity async_counter is

port(CLK: in std_logic;

RESET: in std_logic;

COUNT: inout std_logic_vector(3 downto 0));

end async_counter ;

architecture async_counter_arch of async_counter is

begin

process(RESET, CLK, COUNT(0), COUNT(1), COUNT(2))

begin

if RESET ='1' then

COUNT <= “0000”;

else

if(rising_edge(CLK)) then COUNT(0)<=not COUNT(0); end if;

if(rising_edge(COUNT(0))) then COUNT(1)<=not COUNT(1); end if;

if(rising_edge(COUNT(1))) then COUNT(2)<=not COUNT(2); end if;

if(rising_edge(COUNT(2))) then COUNT(3)<=not COUNT(3); end if;

end if;

end process;

end async_counter_arch;
CENG3430 Lec05: Finite State Machines 69

Asynchronous clocks

Each assignment is a flip-flop

Asynchronous Clock Counter

(a.k.a. Ripple Counter)

The output of one state register is the clock of another state register.

Class Exercise 5.11

• Draw the waveforms of COUNT(0) ~ COUNT(3) to

show the time delays of a 4-bit async. clock counter:

CENG3430 Lec05: Finite State Machines 70

Student ID:

Name:

Date:

CLK

Flip

Flop

RESET

Flip

Flop

Flip

Flop

Flip

Flop

COUNT(0)

COUNT(1)

COUNT(2)

COUNT(3)

CLK
t: time delay at one FF

COUNT(0) COUNT(1) COUNT(2) COUNT(3)

Example 2) Pattern Generator

• Pattern Generator: Generates any pattern we want.

– Example: the control unit of a CPU, memory controller,

traffic light, etc.

• Encoding methods for representing patterns/states:
– Binary Encoding: Using N flip-flops to represent 2N states.

• Less flip-flops but more combinational logics

– One-hot Encoding: Using N flip-flops for N states.

• More flip-lops but less combination logic

– Xilinx default seeting is one-hot encoding.

• Change at synthesis  options

• http://www.xilinx.com/itp/xilinx4/data/docs/sim/vtex9.html

CENG3430 Lec05: Finite State Machines 72

Class Exercise 5.12

• How many states can a 4-bit counter have?

Answer: ___________________________________

• Under binary and one-hot encoding schemes, how

many bits for the state registers are required,

respectively, if you need:

CENG3430 Lec05: Finite State Machines 73

Student ID:

Name:

Date:

Binary One-Hot

4 States

9 States

21 States

Class Exercise 5.13

CENG3430 Lec05: Finite State Machines 75

Student ID:

Name:

Date:

• Given the following machine of 4 states: A, B, C and D.

– The machine has an asynchronous RESET, a clock signal

CLK and a 1-bit synchronous input signal INX.

– The machine also has a 2-bit output signal OUTX.

• Write the complete VHDL program for the design.

• Is this a Moore or Mealy Machine?

A
OUTX=“01”

B
OUTX=“11”

C
OUTX=“10”

D
OUTX=“00”

INX=‘0’

INX=‘0’

INX=‘1’

INX=‘1’INX=‘0’

INX=‘1’

INX=‘1’

RESET
RESET=‘1’ INX=‘0’

Class Exercise 5.13

CENG3430 Lec05: Finite State Machines 76

Student ID:

Name:

Date:

library IEEE;

use IEEE.std_logic_1164.all;

entity ex is port(

RESET,CLOCK,INX: in STD_LOGIC;

OUTX: out STD_LOGIC_VECTOR(1 downto 0));

end x7e;

architecture ex_arch of ex is

type state_type is (A,B,C,D);

signal s: state_type;

begin

process(CLOCK, RESET) -- sequential

begin

if _____________________ then

s <= _;

OUTX <= "__";

elsif __________________ then

case s is

when A =>

if INX = '_' then s <= _;

else s <= _; end if;

when B =>

if INX = '_' then s <= _;

else s <= _; end if;

when C =>

if INX = '_' then s <= _;

else s <= _; end if;

when D=>

if INX = '_' then s <= _;

else s <= _; end if;

end case;

end if;

end process;

process(s) -- combinational

begin

case s is

when A => OUTX <= "__";

when B => OUTX <= "__";

when C => OUTX <= "__";

when D => OUTX <= “__";

end process;

end ex_arch; Moore or Mealy?

Summary

• Finite State Machine (FSM)

– Clock Edge Detection

– Feedback

• Use of Signals and Variables

– Outside Process: Concurrent Statement

– Inside Process: Sequential Statement

• Combinational Process

• Clocked Process

• Types of FSMs: Moore vs. Mealy

• Practical Examples

– Up/Down Counter

– Pattern Generator

CENG3430 Lec05: Finite State Machines 78

